The following diagrams illustrate the Tuckerman traverse for a 15-sided hexaflexagon made from a straight strip of triangles. Here are 4 different ways to fold the strip and diagrams of the corresponding Tuckerman traversal. ![]()
![]()
![]() This last diagram would overlap itself so to make it clearer, I extended several lines. The extensions are marked in red. ![]() The following is the complete list of all 14 variations for the 15-sided hexaflexagon: 1 12 10 14 12 10 15 15 6 4 2 6 4 9 7 2 11 11 13 13 9 1 14 7 3 3 5 5 8 8 1 14 10 10 12 12 15 15 4 4 6 6 2 9 7 2 13 11 9 13 11 1 14 5 3 7 5 3 8 8 1 3 14 1 5 9 9 7 7 4 4 13 13 11 11 2 2 15 15 6 8 10 6 8 3 5 12 14 10 12 1 3 10 12 5 9 9 7 7 15 15 13 13 4 4 2 2 11 11 6 8 10 6 8 14 1 12 14 3 5 1 10 10 8 8 12 4 6 2 4 6 15 15 13 13 2 9 11 7 9 11 5 5 3 3 7 14 1 12 14 1 3 12 14 10 12 14 8 8 6 6 10 15 4 4 2 2 13 13 11 11 15 7 9 5 7 9 1 3 5 1 3 13 15 8 12 12 10 10 1 5 7 3 5 7 2 2 14 14 9 11 13 9 11 15 6 6 4 4 8 1 3 13 15 10 12 8 10 12 1 5 7 3 5 7 2 2 14 14 11 11 9 9 13 15 6 6 4 4 8 1 3 8 15 15 10 12 14 10 12 5 7 3 5 7 2 2 9 14 1 9 13 13 11 11 6 6 4 4 8 1 3 8 15 15 12 12 10 10 14 5 7 3 5 7 2 2 9 14 1 11 13 9 11 13 6 6 4 4 8 1 3 13 15 11 13 15 6 8 10 6 8 3 5 10 2 2 14 14 12 12 1 5 9 9 7 7 4 4 11 1 3 13 15 11 13 15 4 6 10 10 8 8 5 5 2 2 14 14 12 12 1 3 7 9 11 7 9 4 6 1 11 9 14 12 1 14 12 3 3 6 6 8 8 4 2 10 10 13 13 15 15 11 4 2 7 5 9 7 5 1 11 9 1 12 12 14 14 3 3 8 6 4 8 6 2 10 10 15 13 11 15 13 4 2 9 5 5 7 7 The sequence of how many different hexaflexagon variations can be folded from a straight strip can be found at http://www.research.att.com/~njas/sequences/A007282 |
![]() | © Scott Sherman 2007 | send comments to comments at this domain |